
11460 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 12, DECEMBER 2020

Toward Secure and Privacy-Preserving Distributed
Deep Learning in Fog-Cloud Computing

Yiran Li , Graduate Student Member, IEEE, Hongwei Li , Senior Member, IEEE,

Guowen Xu , Graduate Student Member, IEEE, Tao Xiang , Member, IEEE, Xiaoming Huang, Member, IEEE,

and Rongxing Lu , Senior Member, IEEE

Abstract—Fog-cloud computing promises many new vertical
service areas beyond simple data communication, storing, and
processing. Among them, distributed deep learning (DDL) across
fog-cloud computing environment is one of the most popular
applications due to its high efficiency and scalability. Compared
with the centralized deep learning, DDL can provide better
privacy protection with training only on sharing parameters.
Nevertheless, when DDL meets fog-cloud computing, it still faces
two major security challenges: 1) how to protect users’ pri-
vacy from being leaked to other internal participants in the
training process and 2) how to guarantee users’ identities from
being forged by external adversaries. To combat them, sev-
eral approaches have been proposed via various technologies.
Nevertheless, those approaches suffer from drawbacks in terms
of security, efficiency, and functionality, and cannot guaran-
tee the legitimacy of participants’ identities during training. In
this article, we propose a secure and privacy-preserving DDL
(SPDDL) for fog-cloud computing. Compared with the state-of-
the-art works, our proposal achieves a better tradeoff between
security, efficiency, and functionality. In addition, our SPDDL can
guarantee the unforgeability of users’ identities against external
adversaries. Extensive experimental results indicate the practical
feasibility and high efficiency of our SPDDL.

Index Terms—Distributed deep learning (DDL), fog-cloud
computing, identity verification, privacy preserving.

Manuscript received March 30, 2020; revised June 13, 2020 and July
7, 2020; accepted July 24, 2020. Date of publication July 28, 2020;
date of current version December 11, 2020. This work was supported in
part by the National Key Research and Development Program of China
under Grant 2017YFB0802300 and Grant 2017YFB0802000; in part by
the National Natural Science Foundation of China under Grant 61972454,
Grant 61802051, Grant 61772121, and Grant 61728102; in part by the
Sichuan Science and Technology Program under Grant 2020JDTD0007 and
Grant 2020YFG0298; in part by the Peng Cheng Laboratory Project of
Guangdong Province under Grant PCL2018KP004; and in part by the Guangxi
Key Laboratory of Cryptography and Information Security under Grant
GCIS201804. (Corresponding author: Hongwei Li.)

Yiran Li, Hongwei Li, and Guowen Xu are with the School of Computer
Science and Engineering, University of Electronic Science and Technology
of China, Chengdu 611731, China, and also with Cyberspace Security
Research Center, Peng Cheng Laboratory, Shenzhen 518000, China (e-mail:
yiranli842@foxmail.com).

Tao Xiang is with the College of Computer Science, Chongqing University,
Chongqing 400044, China (e-mail: txiang@cqu.edu.cn).

Xiaoming Huang is with the Technology Marketing Department, CETC
Cyberspace Security Research Institute Company Ltd., Chengdu 610041,
China (e-mail: apride@gmail.com).

Rongxing Lu is with the Faculty of Computer Science, University of New
Brunswick, Fredericton NB E3B 5A3, Canada (e-mail: rlu1@unb.ca).

Digital Object Identifier 10.1109/JIOT.2020.3012480

I. INTRODUCTION

FOG-CLOUD computing is envisioned as a preferable
complement of single-cloud computing [1], [2]. For sup-

plying Internet-of-Things (IoT) services with high scalability
and low latency, fog-cloud computing deploys a part of pro-
cessing and storage to fog nodes, which are closer to “things.”
Based on the decentralized computing architecture, distributed
deep learning (DDL) has been properly applied in IoT and
supplied with diverse scenarios, such as autonomous vehicles
[3], [4], smart grid [5], [6], e-health [7], [8], etc. For exam-
ple, the DDL-based vehicle system can timely and precisely
make complex driving decisions by deploying the unified neu-
ral networks to base stations (fog nodes) and the cloud server.
Besides, a DDL-based smart grid can achieve electricity billing
and fault detection with higher efficiency. Assuredly, DDL has
obtained remarkable achievements in IoT and is expanding the
application scenarios of IoT.

Tracing back to 2016, Google company formalized the
concept of DDL (also called federated learning) for address-
ing the issue of data privacy with a distributed learning
model. With the novel framework, DDL can achieve train-
ing model only by exchanging parameters between the cloud
server and users, rather than the raw data. Despite this, DDL
still has some intrinsic security issues, which may prevent
the application of DDL in fog-cloud computing. State-of-
the-art research [9] has demonstrated that in the DDL-based
framework, the user’s private information may be leaked
to other internal participants through even a small partition
of leaked parameters. For addressing this problem, many
researches have been carried out, which are mainly based
on differential privacy (DP) and encryption technology. The
main idea of DP-based DDL is to add noise (Laplace or
Gaussian noises) [10], [11] to the exchanged parameters for
concealing the real information while achieving the secure
aggregation for obtaining the global weights of the neural
networks. Encryption technologies fall into two main cate-
gories: 1) secure multiparty computation (SMC) and 2) homo-
morphic encryption (HE). The SMC-based DDL [12], [13]
aims to create approaches for users to jointly calculate a
summation of their gradients while keeping data privacy
through Yao’s garbled circuit (GC) [14] or secret key sharing
(such as the Shamir secret sharing (SS) [15]). Additionally,
HE-based DDL [11], [13] utilizes fully HE (FHE) or
additive HE (AHE) to construct the privacy-preserving
protocol.

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:55:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4361-4796
https://orcid.org/0000-0002-1961-7946
https://orcid.org/0000-0002-9764-9345
https://orcid.org/0000-0002-9439-4623
https://orcid.org/0000-0001-5720-0941

LI et al.: TOWARD SECURE AND PRIVACY-PRESERVING DISTRIBUTED DEEP LEARNING IN FOG-CLOUD COMPUTING 11461

Nevertheless, current methods still face some challenges in
security, efficiency, and functionality. First, although DP-based
schemes can operate with high efficiency and low consump-
tion, they must balance accuracy and privacy [16]. Second,
SMC-based methods can guarantee security and provide more
functionalities, however, multiple rounds of interaction lead
to large communication overhead, which is a serious chal-
lenge for the resource-constrained devices in IoT. Third,
FHE-based frameworks can simultaneously support addition
and multiplication operations, however, the unacceptably huge
consumptions of storage and computation make it unfeasible
for practical applications. Recent solutions based on additive
HE seem more efficient than FHE and SMC-based ones, never-
theless, utilizing a unified private key for all the users is unable
to defend against the collusion, in which internal participants
(some curious users and the cloud server) may collude with
each other for obtaining other users’ privacy. Meanwhile, they
cannot be robust for users dropping out, which will cause the
training process to restart and consume many more resources.
Beyond the issues above, in the practical IoT environment,
some external adversaries may forge the legitimate users’ iden-
tities [17] to corrupt the DDL-based framework. Unfortunately,
existing solutions have no consideration of any authentication
mechanism to guarantee the unforgeability of users’ identities
during training.

In this article, we propose a secure and privacy-preserving
DDL (SPDDL) for fog-cloud computing, where the threshold
Paillier encryption [18] is utilized for encrypting the local gra-
dients and a threshold signature [19] is applied to verify the
users’ identities. We demonstrate that our proposal achieves a
preferable tradeoff between security, efficiency, and function-
ality than current works. Focusing on security, our scheme
holds threshold encryption property and does not need to bal-
ance accuracy and privacy, both of which make our scheme
more secure than AHE-based methods [20], [21] and DP-
based methods [22]–[25]. Meanwhile, our scheme performs
with higher accuracy than DP-based methods. As the same
functionalities as the SMC-based method [12] can provide,
our SPDDL supplies privacy protection against the collusion
between multiple internal participants and robustness to users
exiting during the training procedure. Note that less exchanges
between participants and the optimal encryption mechanism
allow our SPDDL to perform with much less communica-
tion and computation overhead. In addition, an authentication
scheme is conducted to defend against external adversaries
from forging users’ identities, which supplies our SPDDL with
a higher security level.

Compared with the previous conference version [26], we
have improved the security level of our scheme, where we
utilize a zero-knowledge proof-based signature scheme to
verify the users’ identities. Besides, we have applied our
proposed SPDDL into fog-cloud computing. Additionally, a
more detailed analysis of security and a more comprehen-
sive evaluation of performance have been presented in this
version. Specifically, the contributions of this article can be
summarized as follows.

1) Identity Verification: A zero-knowledge proof-
based threshold signature is utilized to construct

the authentication scheme, which can ensure the
unforgeablity of users’ identities against the adaptive-
chosen-message attack, and prohibit external adversaries
from compromising our system for malicious attacks.

2) Privacy Preservation: A public-key system is built up
based on the threshold Paillier encryption. With the mul-
tikey framework, each user’s data privacy is guaranteed
from being deduced by the cloud server or other users
while working with low overhead of key management.

3) Resistance Against Collusion: SPDDL can tolerate the
collusion among a certain amount of internal par-
ticipants, including users and the cloud server while
guaranteeing users’ private information from leakage.

4) Robustness for Users Dropping out: A robust privacy-
preserving protocol is designed for supporting users
exiting in any phase of the training procedure, which
can avoid redundant repetitions of the training pro-
cess, for alleviating the communication and computation
overhead.

5) Provable Security and High Performance:
Comprehensive security analysis is provided for
demonstrating the unforgeability of each user’s identity
against external adversaries, as well as the security
against internal participants. Besides, purposeful simu-
lations are operated in extensive experiments to prove
SPDDL with preferable feasibility, efficiency, and
security.

The remainder of this article is organized as follows. We
state our research problem in Section II, and review some
encryption primitives in Section III. In Section IV, we per-
form a detailed introduction to our scheme. Then, we achieve
a comprehensive security analysis and analyze performance
evaluation, respectively, in Sections V and VI. Next, we dis-
cuss related works in Section VII. Finally, in Section VIII, we
draw our conclusions.

II. PROBLEM STATEMENT

In this section, we first review the DDL. Then, we outline
an overview of our system. Finally, we introduce the threat
model as well as our goals.

A. Distributed Deep Learning

1) Neural Network: In general, SPDDL can be applied to
any type of neural network. For simplicity, we take the fully
connected neural network (FCNN) as an example to introduce
the concept of neural networks. As shown in Fig. 1, this model
acts as a bottom-up pipeline, which is constituted by the input
layer, hidden layer, and output layer. Meanwhile, adjacent two
layers are connected by the vector of weights. We can define
this model as a function: F(X, W) =˜Y (X: input vector, W:
weight, and ˜Y: output vector). Given a training data set D =
{X, Y}, the loss function could be defined as L(Y,˜Y) = ||Y −
˜Y||2. For achieving the model training, we should minimize
L(Y,˜Y) to obtain the optimal parameter of weight W. This
nonlinear optimization problem can be addressed by minibatch
stochastic gradient descent (SGD) [11], [27], [28].

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:55:38 UTC from IEEE Xplore. Restrictions apply.

11462 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 12, DECEMBER 2020

Fig. 1. Fully connected neural network.

2) Stochastic Gradient Descent: The entire data set consists
of N pairs of training data, which can be defined as DN =
{Di = (Xi, Yi), i = 1, 2, . . . , N}. In the jth iteration, some
data pairs of (Xi, Yi) will be randomly chosen from DN to
constitute the minibatch Dj ∈ DN for training the model. Then,
the loss function is defined as follows:

LF
(

Dj, Wj
) = 1

|Dj|
∑

(Xi,Yi)∈Dj

LF
(

Xi, Yi, Wj
)

where LF(Xi, Yi, Wj) = L(Yi, F(Xi, Wj))=||Yi−˜Yi||2, and |Dj|
denotes the number of training pairs in Dj.

Then, for obtaining the optimal training model, the param-
eter of weight W will be adjusted as follows:

Wj+1 ← Wj − β∇LF(Dj, Wj)

where β denotes the learning rate, ∇ denotes the partial deriva-
tive of LF with respect to Wj based on the data set Dj, Wj

denotes the current weight, and Wj+1 denotes the updated
weight. The neural network performs the above-mentioned
parameter updates iteratively until the preconvergence condi-
tions are satisfied.

B. System Overview

As shown in Fig. 2, there are four entities in our applica-
tion scenario, i.e., perceptual devices, fog nodes (considered
as users), the cloud server, and trusted authority (TA). In
brief, perceptual devices upload real-time information, while
the cloud server cooperates with fog nodes to construct the
fog-cloud computing structure, which makes complex deci-
sions [29] and issues control instructions to perceptual devices.
We specifically describe three entities applied in our scheme
as follows.

1) TA: TA initializes our framework, generating public
parameters and a public key, as well as some private
keys. Besides, it broadcasts public parameters and the
public key to both of users and the cloud server, while,
respectively, sending each unique private key to each
user through the secure tunnel based on the transport
layer security (TLS) protocol [30].

2) Users: Users cooperate with the cloud server to exe-
cute the privacy-preserving training process, where they
calculate local gradients with the data sent by per-
ceptual devices and achieve the encryption of local

Fig. 2. System overview.

gradients for further secure aggregation in the cloud
server. Additionally, for verifying each user’s identity,
each user signs their local gradients and uploads the
signatures.

3) Cloud Server: The cloud server aggregates these
encrypted gradients, achieves the decryption for obtain-
ing a summation of these gradients, and calculates
the global parameters of weights. Besides, it executes
the authentication for each user through verifying each
user’s signatures.

C. Threat Model and Goals

In our scenario, users and the cloud server are considered
as two honest-but-curious entities [31], which means that both
of them will strictly execute the protocol, but some curi-
ous ones of them may intend to infer other ones’ private
information. Besides, there exist some external adversaries
trying to attack the system through forging users’ identities
to deceive the system, and they are considered impossible to
access our system if they cannot obtain the legal identities.
Additionally, we assume the TA is totally honest. That means
it will strictly follow the scheme with no intention to collude
with any other participants. Furthermore, a certain amount of
internal participants (including users and the cloud server) are
permitted to obtain the most offensive capabilities by colluding
with each other.

The goals of our SPDDL are to protect users’ private gradi-
ent information, even if multiple internal participants collude
with each other, guarantee each user’s identity unforgeable,
and keep robustness to users’ failure at any phase of the
training procedure.

III. CRYPTOGRAPHIC PRIMITIVES

In this section, we review the encryption scheme [18], which
constructs our privacy-preserving protocol, and the signature
scheme [19], which conducts our authentication framework.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:55:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: TOWARD SECURE AND PRIVACY-PRESERVING DISTRIBUTED DEEP LEARNING IN FOG-CLOUD COMPUTING 11463

A. Threshold Paillier Encryption

Although there are many encryption technologies, we utilize
the (K, T)-threshold Paillier encryption [18] in our scheme
because it has not only the additive homomorphic property
but also the (K, T)-threshold property, both of which allow us
to achieve the secure aggregation on users’ plaintexts.

In this asymmetric cryptosystem, each user holds a unified
public key Puk while the private key will be divided to K
keys denoted as (S1, S2, . . . , Sk), which are distributed to K
users. With the public key Puk, each user’s plaintext could be
encrypted, but only the collaboration of at least T users can
achieve the decryption. Considering there are K users and the
ith user Ui holds a public key Puk and a private key Si, we
introduce the scheme in detail.

1) Key Generation: The public key is Puk = n, where
n = pq (n is a large positive integer, and p and q are two
primes). For acquiring a private key Si, we first randomly
choose xj (for 0 < j < T) from {0 , . . . , n ∗ n′ − 1},
where n′ = p′q′, and p′ and q′ are two primes obtained from
p = 2p′ + 1 and q = 2q′ + 1. Especially, x0 = d, which is
calculated from d = 0 mod n′ and d = 1 mod n through the
Chinese remainder theorem. Then, we obtain the private key
Si =∑T−1

j=0 xj(i)jmod nn′ (1 ≤ i ≤ K).
2) Encryption: Each user Ui can encrypt a plaintext

M ∈ Zn with the public key Puk, through the module
exponential operation as follows:

C = EPuk(M) = (1+ n)Mrn
i mod n2

where ri is a private random number chosen by each Ui from
the multiplicative group Z∗n2 .

Assuming that there are two plaintexts of M1, M2 ∈ Zn and
a constant b ∈ Zn, the additive homomorphic property of this
encryption scheme can be described as follows:

EPuk(M1 +M2) = EPuk(M1) · EPuk(M2)

= (1+ n)M1+M2(r1r2)
nmod n2

EPuk(b ·M1) = (EPuk(M1))
b = (1+ n)bM1r1

bnmod n2

where r1, r2 ∈ Z∗n2 are the private random numbers.
3) Decryption: For decrypting the ciphertext C to obtain

the plaintext M, each user Ui first utilizes the private key Si

to encrypt C for obtaining a secret share Ci as follows:

Ci = C2�Si , where � = (K!).

Then, T shares of Ci will be combined. Finally, based on
the combination, the plaintext M could be obtained through
the Lagrange interpolation algorithm and the “extraction algo-
rithm” [18]. Similarly, we can obtain (M1 +M2) and (b ·M1)

through the decryption above.

B. Threshold Signature

For verifying users’ identities, we utilize the threshold sig-
nature [19], which is based on zero-knowledge proof [32]. The
advantages are: 1) in the verification process, the verifier can
know nothing about the signature supplier’s plaintext or pri-
vate key; 2) the public key and private keys utilized in the
signature scheme are as same as the ones used in the thresh-
old encryption [18], which can minimize the overhead of key

management; and 3) the noninteractive property can guarantee
the robustness to users’ failure in the verification procedure.

Considering a security parameter k and a message M,
we briefly review the scheme as follows. Specifically, the
scheme falls into three parts: 1) SIG.gen; 2) SIG.signature;
and 3) SIG.verify. First, with an input of security parameter
k, the key generation SIG.gen(k)→ (Puk, Si) outputs the pub-
lic key Puk and the private key Si, which are as same as the
ones generated in the threshold encryption [18]. Then, with
the input of the private key Si and the message M, the sign-
ing algorithm SIG.signature(Si, M)→SSi outputs a signature
SSi on the message M. Finally, with the input of the public
key Si, the signature SSi, and the message M, the verifying
scheme SIG.verify(Puk, SSi, M)→{0, 1} outputs a result indi-
cating whether the signature is valid. Assuming that the RSA
problem [19] is hard, this scheme can guarantee the robust-
ness and unforgeability against the adaptive-chosen-message
attack [19] in the random oracle mode.

IV. OUR PROPOSED SCHEME

A. Overview of SPDDL

For protecting each user’s private gradients from being
leaked in the DDL training process, we utilize the threshold
Pallier algorithm [18] to encrypt the gradients and achieve the
secure aggregation of these gradients. Besides, for prohibit-
ing the external adversaries from forging users’ identities, we
adopt the threshold signature [19] to construct our authentica-
tion scheme.

As shown in Fig. 3, six phases are performed in our SPDDL.
Specifically, in phase 0, TA initializes the system, generating
the public parameters, a public key, as well as private keys, and
distributing them to each entity. In phase 1, each user sends
his own signature to the cloud server [33], where the authenti-
cation could be achieved through, respectively, verifying each
user’s signature. Phases 2–5 construct our privacy-preserving
training protocol, where gradient encryption is achieved in
phase 2, ciphertext aggregation is done in phase 3, decryp-
tion is executed in phase 4, and the global weight is updated
in phase 5. To conclude, our scheme falls into three main parts:
1) initialization; 2) authentication; and 3) privacy-preserving
training, as follows.

B. Initialization

In our SPDDL, we utilize a TA for initializing the whole
system in phase 0. The main tasks contain three parts:
1) parameter generation; 2) key generation; and 3) data
distribution.

1) Parameter Generation: We assume there are totally N
users constituting the set UN . Considering the (K, T)-
threshold encryption applied in our scheme, in a training
process, K users will be randomly chosen as a subgroup
UK ∈ UN for training the DDL model, and consider-
ing instabilities of the network and users’ equipment, no
one can guarantee that all the users belonging to UK can
achieve the uploading tasks, therefore, E users will be
chosen as a subgroup UE ∈ UK , who’s gradients consti-
tute the summation of gradients. To summarize, TA will

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:55:38 UTC from IEEE Xplore. Restrictions apply.

11464 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 12, DECEMBER 2020

Fig. 3. Overview of Our SPDDL

generate K, T , and E, where K and T are two parameters
for the (K, T)-threshold encryption, and K > E > T .

2) Key Generation: In our SPDDL, authentication and
encryption can utilize the same public key and private
keys in common. The public key Puk will be set as
n = pq, where n is a large integer, and p as well as q
are two primes, while the private key Si will be, respec-
tively, generated for each user Ui ∈ UK , as depicted in
Section III-A.

3) Data Distribution: The public parameter group (K, T, E)

and the public key Puk are totally open for users and
the cloud server, which will be broadcasted to both of
them. However, the private key Si will be sent to each
user Ui ∈ UK through the secure tunnel for guaranteeing
the security of our framework.

C. Authentication

Since the key generation for the signature is achieved in
Section IV-B, we focus on how to sign the gradient message
and verify users’ identities in this section. For guaranteeing the
preciseness of our scheme, we utilize the “packing method”

proposed in [20] to represent each user Ui’s gradient message
as an integer plaintext Gi ∈ Zn needed in the threshold Paillier
encryption. Considering the Gi ∈ Zn, the whole process takes
as each user generates a signature SSi on the Gi, and the cloud
server justifies whether the signature is valid. Specifically, the
whole process can be divided into signature and verification
as follows.

1) Signature: For obtaining a signature, we first define a
hash function H to map messages to the elements of Z∗n, where
n denotes the public key Puk and Z∗n is a multiplicative group.
Then, we define another hash function H′ with the output
length of 128 b.

Then, considering Gi, we now introduce how to generate
a signature on Gi with the key pair (Puk, Si) and the public
parameter K. We first calculate hi = H(Gi), then the Ui’s
signature SSi could consist of yi = hi

2�Si ∈ Qn and a proof of
correctness, where � = (K!), and Qn is a subgroup of squares
in Z∗n. For obtaining the proof of correctness (Vi,˜Vi), each user
Ui will calculate Vi and ˜Vi as follows:

Vi = H′
(

v, ỹi, vi, y2
i , v′i, y′i

)

; ˜Vi = SiVi + Ri (1)

where Ri is a private random number chosen from
{0, . . . , 2(L(n)+2L1−1)}, L(n) is denoted as the bit length of
n, L1 = 128, v is the number for generating the cyclic group
of squares in Z∗n2 , vi = v�Si mod n2, ỹi = hi

4�, v′i = vRi , and
y′i = ỹRi .

Finally, each user will obtain a signature as SSi =
(yi, Vi, ˜Vi), which is uploaded to the cloud server for veri-
fication.

2) Verification: After receiving the SSi, the cloud server
calculates V ′i as follows:

V ′i = H′
(

v, ỹi, vi, y2
i , v

˜Vi v−Vi
i , ỹi

˜Viy−2Vi
i

)

. (2)

Following that, the cloud server will verify whether V ′i = Vi.
If yes, the signature could be valid, otherwise, it should be
invalid. Therefore, we can verify if the right Gi encrypted
with Si is indeed uploaded by the right user Ui.

D. Privacy-Preserving Training

For better understanding of how to protect users’ privacy
in the training process, we first give a brief overview of our
privacy-preserving scheme through the pseudocode depicted
in Algorithm 1.

Considering there are total N users, and each user Ui ∈ UN

holds the same local neural network along with a unique local
training data set Di. In an iteration, some users are randomly
chosen for calculating their gradients with their local training
data sets. Then, their gradients will be aggregated in the cloud
server. Following that the cloud server calculates the average
value of these gradients and updates the global weight W. In
the process, lines 7–9 are required to guarantee the privacy of
users’ gradients. Specifically, four phases will be executed for
achieving the privacy-preserving training process, including
gradient encryption, secure aggregation, decryption, and model
updating, as follows.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:55:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: TOWARD SECURE AND PRIVACY-PRESERVING DISTRIBUTED DEEP LEARNING IN FOG-CLOUD COMPUTING 11465

Algorithm 1 Privacy-Preserving Training
Input: Public key: Puk, Private key: Si

Training Data Set: DN = {Di = (Xi, Yi), i = 1, 2...N},
Learning Rate: β,
Loss Function: LF(Di, W) = LF(Xi, Yi, W).

Output: W (Weight vector)
1: Randomly initialize W;
2: repeat
3: Randomly choose some Di as a subset Ds ∈ DN ;
4: for (each Di ∈ Ds) do
5: Compute gradient Gi ← ∇LF(Xi, Yi, W);
6: end for
7: Encrypt each Gi with Puk;
8: Aggregate all encrypted Gi;
9: Decrypt the encrypted

∑

Di∈Ds
Gi;

10: Compute ˜G← 1
|Ds|

∑

Di∈Ds
Gi;

11: Update new W← old W − β˜G;
12: until Loss function stops decreasing
13: return W.

1) Gradient Encryption: In phase 2, considering the (K, T)-
threshold encryption, K verified users constitute a subgroup
UK ∈ UN . With the public key Puk = n, each user Ui ∈ UK

will first encrypt the gradient Gi as follows:

CGi = EncPuk(Gi) = (1+ n)Gi ri
nmod n2 (3)

where n = pq, (p and q are two primes), and ri is privately
and randomly chosen from the multiplicative group Z∗n2 . Then,
after the encryption, all users in UK are asked to upload their
results of the ciphertext CGi to the cloud server.

2) Secure Aggregation: In phase 3, the cloud server ran-
domly chooses E users who have uploaded their results,
constituting a group UE, and achieving the aggregation with
each user’s CGi (Ui ∈ UE), as follows:

Cplus =
i=E
�
i=1

CGi = (1+ n)
∑i=E

i=1 Gi

(

i=E
�
i=1

ri

)n

mod n2 (4)

where K > E > T , and K and T are two parameters for the
(K, T)-threshold Paillier cryptosystem, and for simplicity, we
denote GE =∑i=E

i=1 Gi as the sum of these E users’ gradients.
Then, the acquired Cplus will be, respectively, sent to each
Ui ∈ UK .

We note that the value of (�
i=E
i=1 ri) is still a random value,

and the algorithm is based on the problem of discrete logarithm
difficulty, both of which can guarantee each user’s gradients
from being leaked.

3) Decryption: In phase 4, we achieve decryption for
obtaining the sum of the users’ gradients GE.

For decrypting the ciphertext to obtain the summation of
these gradients, each user Ui ∈ UK will first encrypt Cplus
with their own private key Si to obtain a secret share Ci

plus as
follows:

Ci
plus = C2�Si

plus (5)

where � = K!. Then, each user’s Ci
plus will be sent to the

cloud server again.

After at least T users’ Ci
plus are received by the cloud server,

T users’ Ci
plus will be randomly chosen as a set ST , and be

combined as follows:

C′plus = �
i∈ST

Ci
plus

2ϕ
ST
(0,i)mod n2

where

ϕ
ST
(0,i) = � · �

i′∈ST\i
−i′

i− i′
. (6)

Then, for obtaining the plaintext GE, the Lagrange inter-
polation algorithm is utilized to conclude that C′plus = (1 +
n)4�2GE mod n2, then we can calculate 4�2GE through the
“extraction algorithm” proposed in [18]. Finally, we obtain
the value of GE by multiplying (4�2)−1mod n.

In the procedure, if and only if at least T users’ coop-
eration can achieve the decryption for obtaining the final
sum of gradients. Therefore, in our proposed framework, the
internal participants have no possibility to obtain any useful
information except the final summation.

4) Model Updating: In phase 5, after the cloud server
obtains the sum of gradients GE, it will calculate the newest
global weight W, as follows:

new W ← old W − β · GE

E
(7)

where β denotes the learning rate.
At the end of phase 5, the cloud server will send the

newest W to each Ui ∈ UN for updating their local models.
Noteworthily, phases 2–5 will be executed iteratively until the
optimal training model is acquired.

V. SECURITY ANALYSIS

In our model, two different types of attacks are considered.
In phase 1, we focus on how to prohibit the external adver-
saries from forging the users’ identities, and during phases
2–5, we put emphasis on protecting users’ local gradients from
being leaked to internal curious participants. In this section,
first, we will briefly discuss the correctness of the authentica-
tion. Then, we perform an analysis of how our SPDDL protects
users’ gradients during the privacy-preserving training proce-
dure, and discuss the expected security level our SPDDL can
achieve.

A. Correctness of Authentication

Considering the standard RSA signature to be a secure
scheme, the threshold signature algorithm adapted in our
SPDDL is unforgeable against the adaptive-chosen-message
attack [19], and the unidirectional hash function is secure.
We now verify the correctness of the authentication in our
SPDDL. Assuming there exist external adversaries can forge
users’ identities for compromising our SPDDL through the
adaptive-chosen-message attack. That means they can forge
the users’ signatures. However, because of the security of
the standard RSA signature scheme, the signature applied
in our SPDDL can be unforgeable against the adaptive-
chosen-message attack in the random oracle model [19]. This
contradicts our assumption, therefore, based on our authentica-
tion, no external adversary can forge users’ identities, and the

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:55:38 UTC from IEEE Xplore. Restrictions apply.

11466 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 12, DECEMBER 2020

correctness is proved. Additionally, based on the hash func-
tion unidirectionality and the difficult problem of the discrete
logarithm, it can be easily proven that the cloud server cannot
deduce each user’s private key or gradients.

B. Security of Privacy-Preserving Training

In our settings, we consider users and the cloud server to
be honest-but-curious [34], and we assume that only at most
(T − 1) users are allowed to collude with the cloud server.

In our proposed protocol of privacy-preserving training, all
exchanges are achieved between users and the cloud server,
therefore, the main security threats come from these two
internal entities, and our goal is to protect each user’s local
gradients from being deduced by other users or the cloud
server.

Considering the (K,T)-threshold Paillier encryption [18]
applied in our framework is secure via the security of the
decisional composite residuosity assumption (DCRA) [35]
proposed by Paillier, we can demonstrate that our proposed
protocol can protect each user’s gradients from being leaked,
even if any other (T−1) users are allowed to collude with the
cloud server for obtaining the most offensive capabilities. We
first start with intuitive analysis of our proposed protocol, as
follows.

The main idea of the protocol is to utilize the (K, T)-
threshold Paillier encryption for achieving the secure aggrega-
tion [36] of users’ gradients. As mentioned in Section IV-D,
before the secure aggregation, each user’s Gi will be encrypted
as CGi = EncPuk(Gi) = (1+ n)Gi ri

nmod n2. After being
sent to the cloud server, it may try to deduce Gi, however,
based on the (K, T)-threshold Paillier scheme applied in our
SPDDL cryptosystem, the cloud server cannot infer any use-
ful information of Gi, unless it can collude with other T
users. Additionally, the aggregation will be achieved under
the ciphertext mode. Therefore, under our settings, our pro-
tocol can be secure against the curious cloud server, and the
only plaintext acquired by the cloud server is the summation
result of users’ gradients. Our protocol has the same security
against curious users. According to our protocol, there is no
direct exchange among users, so that if and only if at least T
curious users simultaneously colluding with the cloud server
can infer other users’ gradients.

Then, considering K and T are two parameters for the (K,T)-
threshold Paillier cryptosystem, each user Ui holds the gradient
Gi, E users constitute a group UE ∈ UK , and UE’s gradients
constitute the aggregation value GE, we formally introduce our
theorem and proof as follows.

Theorem 1: Suppose K > E > T ≥ 2. Assuming users and
the cloud server are honest-but-curious, and at most (T − 1)
users are allowed to collude with the cloud server. After the
execution of our privacy-preserving training protocol, each
user Ui’s (Ui ∈ UE) gradient Gi will not be leaked to the
cloud server or other users.

Proof: Supposing there exists an attack algorithm, where
the cloud server holds the most offensive ability to collude
with at most (T − 1) users belonging to UE, and during the
training procedure, as the plaintexts input of this algorithm,

(Puk, K, T, E) can be known by the cloud server. Then, based
on our assumption, Ui’s gradient value Gi could be disclosed
to other curious users or the cloud server by calculating with
these input values. However, each user’s Gi will be encrypted
as a ciphertext, and based on the (K,T)-threshold Paillier cryp-
tosystem, if and only if at least T users’ secret shares can
decrypt the ciphertext for obtaining Gi. This is a contradiction.
Therefore, there is no such attack algorithm.

We give an intuitive example as follows. In our settings,
there are at least two honest users U1, U2 ∈ UE, who can
give two different gradients of G1 and G2. Supposing there
exists an attack algorithm, where the cloud server can deduce
U1’s gradient G1 through calculating with these inputs of
(Puk, K, T, E). For verifying if the cloud server can deduce the
U1’s gradient value G1, we first exchange the observed values
of G1 and G2. Specifically, after the exchange, U1 will hold
the gradient value of G2, and U2 will hold the gradient value
of G1. Then, we run the training procedure again. According
to our scheme, after the execution, there is no change of these
inputs recognized by the cloud server. That means, there is no
change in the input values of the attack algorithm. Therefore,
via this algorithm, the cloud server would still recognize U1’s
gradient value as G1. However, now U1’s gradient value has
been changed from G1 to G2. Obviously, this is contradic-
tory to our assumption. Thereby, there will not exist such an
attack algorithm and users’ gradients will not be inferred by
the cloud server in our framework. Similarly, we can use the
same method above to prove that each user’s gradient cannot
be deduced by other users.

VI. PERFORMANCE EVALUATION

In this part, we first give an introduction to our experi-
ment settings, then we evaluate the performance for each user
and the cloud server, focusing on the overheads of computa-
tion and communication. Next, some state-of-the-art works are
compared with our proposed SPDDL, in terms of functionality,
resource overhead, and accuracy.

A. Experimental Setting

To build “the cloud server,” we utilize a server loaded with
Ubuntu 18.04 operating system, and the hardware is configured
as “RAM: 16 GB, SSD: 256, CPU: 2.10 GHz.” Additionally,
our SPDDL is evaluated on the MNIST database and simu-
lated in Java 1.7.0. Moreover, we utilize (K; �K/2�)-threshold
Paillier cryptosystem in the experiment, and the key size is
set as 512 b. Furthermore, for comparison, we setup an equal
experiment environment for the PPML [12] and DPDL [22],
where we adopt the same neural network and data sets utilized
in our SPDDL.

B. Performance Analysis for Single user

In our experiment, there are three significant factors, includ-
ing the number of chosen users |U| = E = 3K/4, number of
gradients per user |G| = l, and drop rate |R|. Based on the
different values of these three factors, we will evaluate the
performance of one single user from both computation and
communication overhead. In the procedure, we will fix two

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:55:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: TOWARD SECURE AND PRIVACY-PRESERVING DISTRIBUTED DEEP LEARNING IN FOG-CLOUD COMPUTING 11467

(a) (b) (c)

Fig. 4. Computation overhead of each user. (a) |G| = 1000, |R| = 0.1 changing with different numbers of users. (b) |U| = 100, |R| = 0.1 changing with
different numbers of gradients per user. (c) |U| = 100, |G| = 1000 keeping constant with different drop rates.

(a) (b) (c)

Fig. 5. Communication overhead of each user. (a) |G| = 1000, |R| = 0.1 keeping constant with different numbers of users. (b) |U| = 100, |R| = 0.1 changing
with different numbers of gradients per user. (c) |U| = 100, |G| = 1000 keeping constant with different drop rates.

factors of them, and analyze the performance changing with
another factor.

1) Computation Overhead O(E·l): Each user’s computation
overhead falls into three parts: 1) generating the signature,
which takes O(E · l) time; 2) encrypting the local gradients
with the public key, which takes O(l) time; and 3) encrypting
the ciphertext with the private key for decryption, which takes
O(E · l) time.

As depicted in Fig. 4(a), as the number of users increases,
the computation overhead of each user increases linearly.
It is because in the processes of signature generation and
decryption, the parameter � = K! = (4E/3)! will be
used for achieving the exponential operation, specifically,
vi = v�Si mod n2, ỹi = h4�

i , and v′i = vRi for authentication
and Ci

plus = C2�Si
plus for decryption.

As described in Fig. 4(b), as the number of gradients
per user increases, the computation overhead of each user
increases linearly. The reason is that in the process of
encryption, each user’s gradient Gi will be utilized for expo-
nential operation, to be specific, CGi = EncPuk(Gi) =
(1+ n)Gi ri

nmod n2. Meanwhile, each user holds l gradients so
that the number of operations will depend on the size of l. That
means the more gradients of each user, the more exponential
operations will be executed.

As shown in Fig. 4(c), although the drop rate increases, the
computation overhead per user keeps constant. The increasing
drop rate will change the number of existing users as well as
the number of existing users, however, the calculation for each

user has no relation with either of them, but with the number of
users (E). Therefore, the computation overhead keeps constant.

2) Communication Overhead O(l): Each user’s commu-
nication overhead can be broken up as: 1) sending the
signature and receiving the result of verification, which takes
O(l); 2) sending l encrypted gradients (CGi) and receiv-
ing encrypted aggregation, which takes O(l); and 3) sending
l encrypted ciphertext of aggregation (Ci

plus) and receiving
updated weights, which takes O(l).

As depicted in Fig. 5, the communication overhead keeps
constant when the number of users (E) and the drop rate
increase. But the increasing number of gradients per user will
cause the linear increase of the communication overhead. The
reason is that all the sizes of messages sent or received by each
user are fixed, the communication overhead is affected by the
number of each user’s gradients. Furthermore, we note that
the message received from the cloud server could just slightly
affect the overhead. Therefore, the larger number of gradients
per user, the more data should be sent, which consumes more
communication overhead.

C. Performance Analysis for the Cloud Server

1) Computation Overhead O(E·l): The cloud server’s com-
putation overhead consists of: 1) achieving the aggregation of
the gradients under a secure model, which takes O(E · l) and
2) achieving the decryption for obtaining the final summa-
tion of the gradients, which takes O(E). Additionally, we note

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:55:38 UTC from IEEE Xplore. Restrictions apply.

11468 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 12, DECEMBER 2020

(a) (b) (c)

Fig. 6. Computation overhead of the cloud server. (a) |G| = 1000, |R| = 0.1 increasing linearly with the increasing number of users. (b) |U| = 100, |R| = 0.1
increasing linearly with the increasing number of gradients per user. (c) |U| = 100, |G| = 1000 decreasing linearly with the increasing drop rate.

(a) (b) (c)

Fig. 7. Communication overhead of the cloud server. (a) |G| = 1000, |R| = 0.1 increasing linearly with the increasing number of users. (b) |U| = 100,
|R| = 0.1 increasing linearly with the increasing number of gradients per user. (c) |U| = 100, |G| = 1000 decreasing linearly with the increasing drop rate.

that verifying users’ identities with gradients can only slightly
increase the computation overhead.

As depicted in Fig. 6(a), as the number of users
increases, the server’s computation overhead increases linearly,
because the more users, the more gradients should be aggre-
gated in the cloud server. Another reason is that � = K!
will act as the exponent for the exponential operation in the
procedure of decryption.

As described in Fig. 6(b), as the number of each user’s gra-
dients increases, the server’s computation overhead increases
linearly. Similarly, the more gradients per user, the more
gradients should be aggregated in the cloud server.

As shown in Fig. 6(c), the server’s computation overhead
decreases linearly with the increasing drop rate. Because the
larger the drop rate, the less existing users, which will cause
less gradients being aggregated by the cloud server in the
process of aggregation.

2) Communication Overhead O(E · l): The cloud server’s
computation overhead consists of: 1) receiving the proof of
correctness from E users and sending the result of verification
to all of them, which takes O(E · l); 2) receiving encrypted
gradients (CGi) from at least K/2 users and sending encrypted
aggregation to E users, which takes O(E · l); and 3) receiv-
ing encrypted ciphertext of aggregation (Ci

plus) and sending
updated weights, which takes O(E · l)).

As depicted in Fig. 7(a), as the number of users increases,
the communication overhead increases linearly, because the
more users, the more messages should be sent and received
by the cloud server.

As described in Fig. 7(b), the communication overhead
increases linearly, as the number of gradients per user
increases. Similarly, it is because of that the more gradients
per users, the more messages should be sent and received by
the cloud server.

As shown in Fig. 7(c), the communication overhead
decreases linearly with the increasing drop rate. Because the
larger the drop rate, the less existing users, which will cause
less messages being sent from the cloud server, and the less
messages being received by the cloud server.

D. Comparison Between SPDDL and Others

For comprehensively evaluating our scheme, we first com-
pare our SPDDL with several related works in terms of
functionality, then we compare SPDDL with PPML [12],
focusing on resource overhead, and finally, we compare the
accuracy between SPDDL and DPDL [22].

1) Functionality: For evaluating the functionality, we com-
pare our SPDDL with the state-of-the-art works of DPDL [22],
LDPRLM [23], privacy-preserving deep learning (PPDL) [20],
PDLM [21], PPML [12], and SecureML [37], whose main
works are similar to ours.

As shown in Table I, all of the schemes above have the
capability of protecting users’ data privacy. For these two
methods via DP: 1) DPDL [22] and 2) LDPRLM [23], they
can supply with high efficiency and support multiple func-
tionalities, however, they must balance accuracy and privacy
because of the intrinsic property (adding noise for protecting

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:55:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: TOWARD SECURE AND PRIVACY-PRESERVING DISTRIBUTED DEEP LEARNING IN FOG-CLOUD COMPUTING 11469

TABLE I
COMPARISON OF FUNCTIONALITY

(a) (b)

Fig. 8. Computation overhead comparison between SPDDL and PPML,
|G| = 1000, |R| = 0.1, changing with the number of users. (a) Per user. (b)
Cloud server.

privacy) of DP technology, which constrains them within lim-
ited security, while our proposed SPDDL, utilizing encryption
for privacy protection, will not consider this balance, which
makes our scheme more secure than DPDL and LDPRLM.
For PPDL [20] and PDLM [21], which are based on HE, users
hold the same secret key, which makes it vulnerable if multiple
users collude with the cloud server. Additionally, PPDL and
PDLM cannot run smoothly, if the user fails during the execu-
tion. SMC-based methods of PPML [12] and SecureML [37]
can support more functionalities. Nevertheless, since PPML is
primarily exploited for privacy protection, how to verify users’
identities is not considered in their method. Additionally,
SecureML needs two noncolluding servers, which cannot be
secure against the collusion between these two servers.

Compared with these schemes, our proposed SPDDL can
achieve authentication for verifying users’ identities while
guaranteeing each user’s data privacy. Besides, as same as
PPML, the SPDDL has the robustness to users dropping out
and keeps secure against the collusion attack.

2) Resource Overhead: For evaluating the computation
and communication overhead, the SMC-based PPML [12] is
compared with our SPDDL.

As depicted in Fig. 8, the computation cost of our SPDDL
increases linearly with the number of users, however, the curve
of PPML [12] shows the feature of the quadratic function.
According to the analysis in PPML, PPML’s computation cost
takes O(l2+E·l) for each user and O(E·l2) for the cloud server,
while SPDDL obtains the corresponding results of O(E · l)
and O(E · l). That is why our SPDDL takes lower computa-
tion overhead, when the number of users reaches near 1000.
Obviously, that makes our SPDDL more suitable for the fog
IoT constituted by thousands of fog nodes.

As depicted in Fig. 9, we intuitively found that PPML
will cost more communication overhead than SPDDL, both
for users and the cloud server. To be specific, in PPML, the

(a) (b)

Fig. 9. Communication overhead comparison between SPDDL and PPML,
|G| = 1000, |R| = 0.1, changing with the number of users. (a) Per user. (b)
Cloud server.

(a) (b)

Fig. 10. Accuracy comparison between SPDDL and DPDL. (a) Training
accuracy (ε = 2). (b) Testing accuracy (ε = 2).

more number of users, the faster the communication overhead
increases. The root reason is that for achieving the privacy-
preserving DL training process, PPML will run much more
rounds to exchange keys and encrypted secret shares among
users, and many more messages should be transmitted by the
cloud server and users.

3) Accuracy: For further analysis of the performance of our
SPDDL, we compare the accuracy between our SPDDL and
DPDL [22], which is based on DP.

According to the analysis in [10], for guaranteeing the secu-
rity of DPDL [22] as much as possible, we fix ε = 2 for the
(ε,δ)-DP [22], which requires a medium perturbation noise. In
spite of this, in Fig. 10, the experiment results show that the
accuracy of DPDL is much lower than our SPDDL. That is
because adding perturbation noise will reduce the accuracy of
the deep learning model while our scheme keeps the accuracy
as same as the original deep learning model without losing
privacy.

VII. RELATED WORK

For addressing privacy issues of DDL, some approaches
have been proposed, mainly based on DP, SMC, and HE.

A. Differential Privacy-Based Methods

Shokri and Shmatikov [38] proposed the first privacy-
preserving DDL model. The main idea is to add noise into
gradients uploaded to the cloud server. Similar to Shokri and
Shmatikov’s scheme [38], Abadi et al. [22] proposed a DPDL,
which can protect the private information even if the stronger
adversary can obtain the training mechanism and access to
the parameters of the training model. In their scheme, they

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:55:38 UTC from IEEE Xplore. Restrictions apply.

11470 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 12, DECEMBER 2020

exploit the moment accountant for tracking the cumulative pri-
vacy loss, which can be utilized for estimating the accumulated
privacy loss.

However, there are privacy threats [39], [40] existed in
both of their proposed methodologies [22], [38]. Shokri and
Shmatikov’s scheme [38] have been proven that a little gradi-
ent leakage could leak the user’s local original data [20] even
if the local gradients uploaded by users can be obfuscated via
DP. Besides, their schemes [22], [38] are vulnerable if adver-
saries are allowed to train a generative adversarial network
(GAN) [39] to attack the protocol. Additionally, because of
excessive injected noise, the learning procedure might be
significantly hampered for making high utility.

For supplying better security as well as feasibility, many
researches [23]–[25], [41], [42] focus on improving the tra-
ditional DP for adjusting to the DDL. However, through
extensive practical experiments, Jayaraman and Evans [10]
demonstrated that current DP-based DDL methods can rarely
offer an acceptable tradeoff between privacy and accuracy.

B. Secure Multiparty Computation-Based Methods

Generic SMC-based methods are mainly based on Yao’s
GC [14], [43]–[46] and SS [47], [48]. GC-based methods are
suitable for two- or three-party SMC. SS-based frameworks
can adjust to multiple users, but the communication overhead
is unacceptable for practical applications.

For providing an efficient secure learning model,
Mohassel and Zhang [37] proposed a privacy-preserving
machine learning, where they exploit two noncolluding
servers to achieve secure two-party computation (2PC). In
their method, oblivious transfer, GC, and SS are combined
to construct their 2PC framework. Compared with previous
works, their method can supply more efficiency and effec-
tiveness. However, their method is not scalable for more
parties.

Additionally, addressed on the weakness of generic SMC
protocols, Bonawitz et al. [12] presented an approach of prac-
tical secure aggregation via SMC. The main concept of their
scheme is to utilize the SS and masking method to construct
the basis of SMC while achieving the aggregation of gradients
in a secure setting. Nevertheless, their scheme must consume
many rounds to exchange keys and encrypted secret shares
among users, which will cause much more communication
overhead.

Hence, for these SMC-based solutions, there still needs
much improvement in efficiency and functionality.

C. Homomorphic Encryption-Based Methods

Currently, FHE-based methods [49], [50] cannot be imple-
mented in practical applications due to the unbearable resource
overhead. Based on additive HE (AHE), Phong et al. [20]
proposed an approach of PPDL via the asynchronous stochas-
tic gradient. They utilize the AHE for encrypting the gradients
and achieving the secure aggregation, additionally, the cloud
server is considered as honest-but-curious, and the users are
completely honest. However, in the practical environment,
curious users may collude with the cloud server for inferring

other users’ private information, which makes it vulnerable for
their proposed scheme, where users hold the same secret key.
Furthermore, their scheme has no robustness for users’ failure.

For obtaining a more efficient PPDL, Ma et al. [21]
designed a PPDL model on the cloud with multiple keys
(PDLM) based on the public-key cryptosystem with distributed
two trapdoors (DT-PKC) [7], which is constructed by the orig-
inal Paillier HE [35] and Bresson et al.’s cryptosystem [51]. In
their method, two noncolluding entities of the service provider
(SP) and cloud platform (CP) are asked to jointly achieve the
secure training process. However, in the real-world setting, no
one can ensure the impossibility of the collusion between the
two servers, regardless of whether they are from the same oper-
ator. Besides, their scheme is incapable of keeping robustness
to users exiting in the training process.

As discussed above, these state-of-the-art works suffer from
either low security or low efficiency or weak functionality.
Besides, all of them have no consideration of the user’s iden-
tity authenticity. For improving current works, our SPDDL
utilizes the threshold encryption to protect users’ privacy,
which can better protect data confidentiality than DP-based
and AHE-based approaches, and supply with higher accuracy
than DP-based methods. Similar to SMC-based approaches,
our scheme can defend against the collusion between the cloud
server and multiple users, and be robust to users dropping
out in the training process. Noteworthily, our scheme takes
less communication and computation due to fewer rounds of
exchange and the optimal encryption scheme. These properties
allow our SPDDL to perform with a better tradeoff between
security, efficiency, and functionality. In addition, a conducted
authentication scheme makes our SPDDL more secure.

VIII. CONCLUSION

In this article, we have proposed an SPDDL for fog-cloud
computing. We have conducted a privacy-preserving DDL
framework to protect users’ privacy, and an authentication
scheme to prohibit external adversaries from forging users’
identities. We claimed that our SPDDL is robust to users’
dropping out in the training procedure, and has a preferable
balance between efficiency, security, and functionality.

REFERENCES

[1] B. Demin, S. Parlati, P. F. Spinnato, and S. Stalio, “U-lite, a private cloud
approach for particle physics computing,” Int. J. Cloud Appl. Comput.,
vol. 9, no. 1, pp. 1–15, 2019.

[2] J. A. Jeba, S. Roy, M. O. Rashid, S. T. Atik, and M. Whaiduzzaman,
“Towards green cloud computing an algorithmic approach for energy
minimization in cloud data centers,” Int. J. Cloud Appl. Comput., vol. 9,
no. 1, pp. 59–81, 2019.

[3] M. M. Hussain and M. S. Beg, “Using vehicles as fog infrastructures
for transportation cyber-physical systems (T-CPS): Fog computing for
vehicular networks,” Int. J. Softw. Sci. Comput. Intell., vol. 11, no. 1,
pp. 47–69, 2019.

[4] K. Ren, Q. Wang, C. Wang, Z. Qin, and X. Lin, “The security of
autonomous driving: Threats, defenses, and future directions,” Proc.
IEEE, vol. 108, no. 2, pp. 357–372, Feb. 2020.

[5] L. Zhao et al., “Shielding collaborative learning: Mitigating
poisoning attacks through client-side detection,” IEEE Trans.
Depend. Secure Comput., early access, Apr. 14, 2020,
doi: 10.1109/TDSC.2020.2986205.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:55:38 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TDSC.2020.2986205

LI et al.: TOWARD SECURE AND PRIVACY-PRESERVING DISTRIBUTED DEEP LEARNING IN FOG-CLOUD COMPUTING 11471

[6] N. Saxena, S. Grijalva, V. Chukwuka, and A. V. Vasilakos, “Network
security and privacy challenges in smart vehicle-to-grid,” IEEE Wireless
Commun., vol. 24, no. 4, pp. 88–98, Aug. 2017.

[7] Y. Zhang, C. Xu, H. Li, K. Yang, J. Zhou, and X. Lin, “HealthDep:
An efficient and secure deduplication scheme for cloud-assisted eHealth
systems,” IEEE Trans. Ind. Informat., vol. 14, no. 9, pp. 4101–4112,
Sep. 2018.

[8] J. Ni, K. Zhang, X. Lin, and X. S. Shen, “Securing fog computing
for Internet of Things applications: Challenges and solutions,” IEEE
Commun. Surveys Tuts., vol. 20, no. 1, pp. 601–628, 1st Quart., 2017.

[9] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership infer-
ence attacks against machine learning models,” in Proc. IEEE Symp.
Security Privacy (SP), 2017, pp. 3–18.

[10] B. Jayaraman and D. Evans, “Evaluating differentially private machine
learning in practice,” in Proc. USENIX Security, 2019, pp. 1895–1912.

[11] S. Chang and C. Li, “Privacy in neural network learning: Threats and
countermeasures,” IEEE Netw., vol. 32, no. 4, pp. 61–67, Jul./Aug. 2018.

[12] K. Bonawitz et al., “Practical secure aggregation for privacy-preserving
machine learning,” in Proc. ACM CCS, 2017, pp. 1175–1191.

[13] H. Bae, J. Jang, D. Jung, H. Jang, H. Ha, and S. Yoon, “Security
and privacy issues in deep learning,” 2018. [Online]. Available:
arXiv:1807.11655.

[14] A. C. Yao, “Protocols for secure computations,” in Proc. IEEE 23rd
Annu. Symp. Found. Comput. Sci. (SFCS), 1982, pp. 160–164.

[15] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[16] X. Liu, H. Li, G. Xu, S. Liu, Z. Liu, and R. Lu, “PADL: Privacy-aware
and asynchronous deep learning for IoT applications,” IEEE Internet
Things J., early access, Mar. 17, 2020, doi: 10.1109/JIOT.2020.2981379.

[17] S. Kaushik and C. Gandhi, “Ensure hierarchal identity based data secu-
rity in cloud environment,” Int. J. Cloud Appl. Comput., vol. 9, no. 4,
pp. 21–36, 2019.

[18] I. Damgård and M. Jurik, “A generalisation, a simpli. cation and some
applications of Paillier’s probabilistic public-key system,” in Proc. Int.
Workshop Public Key Cryptography, 2001, pp. 119–136.

[19] V. Shoup, “Practical threshold signatures,” in Proc. Int. Conf. Theory
Appl. Cryptograph. Techn., 2000, pp. 207–220.

[20] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-
preserving deep learning via additively homomorphic encryption,” IEEE
Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1333–1345, May 2018.

[21] X. Ma, J. Ma, H. Li, Q. Jiang, and S. Gao, “PDLM: Privacy-preserving
deep learning model on cloud with multiple keys,” IEEE Trans. Services
Comput., early access, Sep. 5, 2018, doi: 10.1109/TSC.2018.2868750.

[22] M. Abadi et al., “Deep learning with differential privacy,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Security, 2016, pp. 308–318.

[23] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning differ-
entially private recurrent language models,” 2017. [Online]. Available:
arXiv:1710.06963.

[24] L. Zhao, Q. Wang, Q. Zou, Y. Zhang, and Y. Chen, “Privacy-
preserving collaborative deep learning with unreliable participants,”
IEEE Trans. Inf. Forensics Security, vol. 15, pp. 1486–1500, Sep. 2019,
doi: 10.1109/TIFS.2019.2939713.

[25] L. Yu, L. Liu, C. Pu, M. E. Gursoy, and S. Truex, “Differentially pri-
vate model publishing for deep learning,” 2019. [Online]. Available:
arXiv:1904.02200.

[26] Y. Li, H. Li, G. Xu, S. Liu, and R. Lu, “EPPs: Efficient privacy-
preserving scheme in distributed deep learning,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), 2019, pp. 1–6.

[27] M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu, “Efficient and
privacy-enhanced federated learning for industrial artificial intelligence,”
IEEE Trans. Ind. Informat., vol. 16, no. 10, pp. 6532–6542, Oct. 2019.

[28] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and
wireless networking: A survey,” IEEE Commun. Surveys Tuts., vol. 21,
no. 3, pp. 2224–2287, 3rd Quart., 2019.

[29] H. Li, D. Liu, Y. Dai, T. H. Luan, and S. Yu, “Personalized search
over encrypted data with efficient and secure updates in mobile
clouds,” IEEE Trans. Emerg. Topics Comput., vol. 6, no. 1, pp. 97–109,
Jan.–Mar. 2018.

[30] F. Fischer et al., “Stack overflow considered harmful? The impact
of copy&paste on android application security,” in Proc. IEEE Symp.
Security Privacy (SP), 2017, pp. 121–136.

[31] G. Xu, H. Li, Y. Zhang, S. Xu, J. Ning, and R. Deng,
“Privacy-preserving federated deep learning with irregular users,”
IEEE Trans. Depend. Secure Comput., early access, Jun. 30, 2020,
doi: 10.1109/TDSC.2020.3005909.

[32] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions
to identification and signature problems,” in Proc. Conf. Theory Appl.
Cryptograph. Techn., 1986, pp. 186–194.

[33] H. Li, D. Liu, Y. Dai, T. H. Luan, and X. S. Shen, “Enabling effi-
cient multi-keyword ranked search over encrypted mobile cloud data
through blind storage,” IEEE Trans. Emerg. Topics Comput., vol. 3,
no. 1, pp. 127–138, Mar. 2015.

[34] G. Xu, H. Li, S. Liu, M. Wen, and R. Lu, “Efficient and privacy-
preserving truth discovery in mobile crowd sensing systems,” IEEE
Trans. Veh. Technol., vol. 68, no. 4, pp. 3854–3865, Apr. 2019.

[35] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proc. Int. Conf. Theory Appl. Cryptograph. Techn.,
1999, pp. 223–238.

[36] G. Xu, H. Li, Y. Dai, K. Yang, and X. Lin, “Enabling efficient
and geometric range query with access control over encrypted spatial
data,” IEEE Trans. Inf. Forensics Security, vol. 14, no. 4, pp. 870–885,
Apr. 2019.

[37] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in Proc. IEEE S&P, 2017, pp. 19–38.

[38] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in Proc.
ACM CCS, 2015, pp. 1310–1321.

[39] B. Hitaj, G. Ateniese, and F. Pérez-Cruz, “Deep models under the GAN:
Information leakage from collaborative deep learning,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Security, 2017, pp. 603–618.

[40] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “VerifyNet: Secure and ver-
ifiable federated learning,” IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 911–926, Jul. 2019, doi: 10.1109/TIFS.2019.2929409.

[41] Z. Huang, R. Hu, Y. Guo, E. Chan-Tin, and Y. Gong, “DP-ADMM:
ADMM-based distributed learning with differential privacy,” IEEE
Trans. Inf. Forensics Security, vol. 15, pp. 1002–1012, Jul. 2019,
doi: 10.1109/TIFS.2019.2931068.

[42] B. Jayaraman, L. Wang, D. Evans, and Q. Gu, “Distributed learning
without distress: Privacy-preserving empirical risk minimization,” in
Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 6343–6354.

[43] Y. Lindell, B. Pinkas, N. P. Smart, and A. Yanai, “Efficient constant
round multi-party computation combining BMR and SPDZ,” in Proc.
Annu. Cryptol. Conf., 2015, pp. 319–338.

[44] Y. Lindell, E. Oxman, and B. Pinkas, “The IPs compiler: Optimizations,
variants and concrete efficiency,” in Proc. Annu. Cryptol. Conf., 2011,
pp. 259–276.

[45] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game,” in Proc. ACM 19th Annu. ACM Symp. Theory Comput., 1987,
pp. 218–229.

[46] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation,” in
Proc. 20th Annu. ACM Symp. Theory Comput., 1988, pp. 1–10.

[47] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty computa-
tion from somewhat homomorphic encryption,” in Proc. Annu. Cryptol.
Conf., 2012, pp. 643–662.

[48] E. Boyle, K.-M. Chung, and R. Pass, “Large-scale secure computation:
Multi-party computation for (parallel) RAM programs,” in Proc. Annu.
Cryptol. Conf., 2015, pp. 742–762.

[49] P. Li et al., “Multi-key privacy-preserving deep learning in cloud
computing,” Future Gener. Comput. Syst., vol. 74, pp. 76–85, Sep. 2017.

[50] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” J. ACM, vol. 56, no. 6, pp. 1–40, 2009.

[51] E. Bresson, D. Catalano, and D. Pointcheval, “A simple public-key
cryptosystem with a double trapdoor decryption mechanism and its
applications,” in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Security,
2003, pp. 37–54.

Yiran Li (Graduate Student Member, IEEE)
received the M.S. degree in communication and
information system from the University of Electronic
Science and Technology of China, Chengdu, China,
in 2009, where he is currently pursuing the Ph.D.
degree with the School of Computer Science and
Engineering.

His research interests include cryptography,
privacy-preserving deep learning, and data security.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:55:38 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/JIOT.2020.2981379
http://dx.doi.org/10.1109/TSC.2018.2868750
http://dx.doi.org/10.1109/TIFS.2019.2939713
http://dx.doi.org/10.1109/TDSC.2020.3005909
http://dx.doi.org/10.1109/TIFS.2019.2929409
http://dx.doi.org/10.1109/TIFS.2019.2931068

11472 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 12, DECEMBER 2020

Hongwei Li (Senior Member, IEEE) received the
Ph.D. degree from the University of Electronic
Science and Technology of China, Chengdu, China,
in 2008.

He is currently the Head and a Professor with
the Department of Information Security, School
of Computer Science and Engineering, University
of Electronic Science and Technology of China.
From October 2011 to October 2012, he worked
as a Postdoctoral Fellow with the University of
Waterloo, Waterloo, ON, Canada. His research

interests include network security and applied cryptography.
Prof. Li won Best Paper Awards from IEEE MASS 2018 and IEEE

HEALTHCOM 2015. He currently serves as the Secretary of IEEE ComSoc
CIS-TC. He serves as an Associate Editor for the IEEE INTERNET OF THINGS

JOURNAL and Peer-to-Peer Networking and Applications, and the Guest
Editor of IEEE NETWORK, the IEEE INTERNET OF THINGS JOURNAL and
the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY.

Guowen Xu (Graduate Student Member, IEEE) is
currently pursuing the Ph.D. degree with the School
of Computer Science and Engineering, University
of Electronic Science and Technology of China,
Chengdu, China.

His research interests include privacy-preserving
deep learning, watermarking deep learning, and
applied cryptography.

Tao Xiang (Member, IEEE) received the Ph.D.
degree in computer science from Chongqing
University, Chongqing, China, in 2008.

He is currently a Professor with the College
of Computer Science, Chongqing University. His
research interests include cryptography, multimedia
security, cloud security, and data privacy.

Xiaoming Huang (Member, IEEE) received
the M.S. degree from Chengdu University of
Information Technology, Chengdu, China, in 2020.

He is currently a General Manager with
the Technology Marketing Department, CETC
Cyberspace Security Research Institute Company
Ltd., Chengdu. His research interests include
cognitive domain security, cryptography and
information security theory, trusted computing and
trusted network technology, and computer and
communication security issues.

Dr. Huang is a member of Sichuan electronic information expert group.

Rongxing Lu (Senior Member, IEEE) received the
Ph.D. degree from the Department of Electrical
and Computer Engineering, University of Waterloo,
Waterloo, ON, Canada, in 2012.

He is currently an Associate Professor with the
Faculty of Computer Science, University of New
Brunswick, Fredericton, NB, Canada. Before that,
he worked as an Assistant Professor with the School
of Electrical and Electronic Engineering, Nanyang
Technological University, Singapore, from April
2013 to August 2016. He worked as a Postdoctoral

Fellow with the University of Waterloo from May 2012 to April 2013.
Dr. Lu is currently a Senior Member of IEEE Communications Society. He

currently serves as the Vice-Chair (Publication) of IEEE ComSoc CIS-TC.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:55:38 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

